Abstract
BackgroundInterstitial cells of Cajal (ICC) have been identified in urinary bladder of several species, but their presence in mice remains uncertain. Meanwhile, dozens of reports indicate that dysregulation of connexin 43 plays an important role in bladder overactivity, but its localization has not been clearly defined, with reports of expression in either the smooth muscle or in myofibroblasts. We recently identified a population of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) positive cells that resemble ICC and are distinct from smooth muscle, fibroblasts, myofibroblasts and neurons. Thus we sought to define more clearly the molecular signature of ICC and in doing so resolve some of these uncertainties.Principle findingsImmunofluorescent localization revealed that NTPDase2-positive cells lie closely adjacent to smooth muscle but are separate from them. NTPDase2 positive cells exhibited co-localization with the widely accepted ICC marker - c-kit. They were further shown to co-localize with other ICC markers CD34 and Ano1, but not with mast cell marker tryptase. Significantly, they show convincing co-localization with connexin 43, which was not present in smooth muscle. The identity of these cells as ICC was further confirmed by the presence of three mesenchymal markers – vimentin, desmin, and PDGFβ receptor, which indicates their mesenchymal origin. Finally, we observed for the first time, the presence of merlin/neurofibromin 2 in ICC. Normally considered a neuronal protein, the presence of merlin suggests ICC in bladder may have a role in neurotransmission.ConclusionsNTPDase2 positive cells in mice bladder are ICC, which can be defined by the presence of c-Kit, CD34, Ano1, NTPDase2, connexin 43, vimentin, desmin, PDGFβ receptor and merlin/NF2. These data establish a definitive molecular expression profile, which can be used to assist in explorations of their functional roles, and the presence of NTPDase2 suggests that purinergic signaling plays a role in regulation of ICC function.
Highlights
In the gastrointestinal tract, interstitial cells of Cajal (ICC) function as pacemakers, neurotransmitter transducers, and mechanosensors that respond to physical and chemical signals, and thereby modulate smooth muscle contractility [1,2,3,4]
NTPDase2 positive cells in mice bladder are Interstitial cells of Cajal (ICC), which can be defined by the presence of c-Kit, CD34, Ano1, NTPDase2, connexin 43, vimentin, desmin, PDGFb receptor and merlin/NF2
These data establish a definitive molecular expression profile, which can be used to assist in explorations of their functional roles, and the presence of NTPDase2 suggests that purinergic signaling plays a role in regulation of ICC function
Summary
Interstitial cells of Cajal (ICC) function as pacemakers, neurotransmitter transducers, and mechanosensors that respond to physical and chemical signals, and thereby modulate smooth muscle contractility [1,2,3,4]. Unlike ICC in gut, the function of ICC in bladder is poorly understood, but emerging data indicates that they too, are implicated in several bladder diseases. NTPDase positive cells exhibited co-localization with the widely accepted ICC marker c-kit. They were further shown to co-localize with other ICC markers CD34 and Ano, but not with mast cell marker tryptase They show convincing co-localization with connexin 43, which was not present in smooth muscle. The identity of these cells as ICC was further confirmed by the presence of three mesenchymal markers – vimentin, desmin, and PDGFb receptor, which indicates their mesenchymal origin. Considered a neuronal protein, the presence of merlin suggests ICC in bladder may have a role in neurotransmission
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.