Abstract

The HMGCR gene encodes the 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the key enzyme for cholesterol synthesis. Mice transgenic for the prokaryotic chloramphenicol acetyl transferase (CAT) reporter gene fused with a 5' Bam H1 fragment including the promoter sequence for murine HMGCR gene have been obtained. Homozygote transgenic mice were derived from a particular line selected for similar regulation of endogenous HMGCR and the transgene expression by nutritional conditions in different tissue. In addition, high expression of the transgene was evidenced in the brain. Cellular expression of the CAT gene in the central nervous system (CNS) was investigated by immunohistochemistry (IHC). This study was performed on frozen sections of the developing and adult brain, using a rabbit anti-CAT antiserum especially raised for that purpose. CAT expression was observed in some rare individuals in different neural cell types including Purkinje cells and astrocytes. But the most outstanding observation was the high level of CAT expression correlated with differentiated pattern of oligodendrocyte (Ol) distribution observed in white-matter tracts. Double and triple labeling for CAT and stage-specific antigens were performed on transgenic Ol-enriched preparations and cultures. This study showed a normal sequence of differentiation in the transgenic oligodendroglial cell lineage and demonstrated a strict correlation between late differentiation and activation of the CAT gene in these cells: CAT expression started in transgenic Ols between galactocerebroside (GC)-positive and myelin basic protein (MBP)-positive stages and was detected in MBP-positive cells during the myelination period. After myelination, the number of CAT-positive Ols decreased in the adult brain. These observations demonstrate a developmental regulation of the CAT transgene in Ols during myelination in CNS and reinforce the hypothesis of endogenous synthesis as major source of cholesterol during myelination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.