Abstract

In vitro cultured plant cells, in particular the tobacco BY-2 cell, have demonstrated their potential to provide a promising bioproduction platform for therapeutic proteins by integrating the merits of whole-plant cultivation systems with those of microbial and mammalian cell cultures. Over the past three decades, substantial progress has been made in improving the plant cell culture system, resulting in a few commercial success cases, such as taliglucerase alfa (Elelyso®), the first FDA-approved recombinant pharmaceutical protein derived from plant cells. However, compared to the major expression hosts (bacteria, yeast, and mammalian cells), plant cells are still largely underutilized, mainly due to low productivity and non-human glycosylation. Modern molecular biology tools, in particular RNAi and the latest genome editing technology CRISPR/Cas9, have been used to modulate the genome of plant cells to create new cell lines that exhibit desired “traits” for producing therapeutic proteins. This review highlights the recent advances in cellular engineering of plant cells towards improved recombinant protein production, including creating cell lines with deficient protease levels or humanized glycosylation, and considers potential development in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.