Abstract

Earlier reports (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019-1024, 1997; Y. Kawaguchi, C. Van Sant, and B. Roizman, J. Virol. 72:1731-1736, 1998) showed that herpes simplex virus 1 (HSV-1) infection causes the hyperphosphorylation of translation elongation factor 1delta (EF-1delta) and that the modification of EF-1delta is the consequence of direct phosphorylation by a viral protein kinase encoded by the UL13 gene of HSV-1. The UL13 gene is conserved in members of all herpesvirus subfamilies. Here we report the following. (i) In various mammalian cells, accumulation of the hyperphosphorylated form of EF-1delta is observed after infection with alpha-, beta-, and gammaherpesviruses, including HSV-2, feline herpesvirus 1, pseudorabiesvirus, bovine herpesvirus 1, human cytomegalovirus (HCMV), and equine herpesvirus 2. (ii) In human lung fibroblast cells infected with recombinant HSV-1 lacking the UL13 gene, the hypophosphorylated form of EF-1delta is a minor species, whereas the amount of the hyperphosphorylated form of EF-1delta significantly increases in cells infected with the recombinant HSV-1 in which UL13 had been replaced by HCMV UL97, a homologue of UL13. These results indicate that the posttranslational modification of EF-1delta is conserved herpesvirus function and the UL13 homologues may be responsible for the universal modification of the translation factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call