Abstract
Differences in cellular cadmium (Cd) distribution between Cd-tolerant and Cd-sensitive lines of amaranth (Amaranthus mangostanus L.) may reveal mechanisms involved in Cd tolerance and hyperaccumulation. We compared the cellular distribution and accumulation of Cd in roots, stems, and leaves between a low-Cd accumulating cultivar (Zibeixian, L-Cd) and a high-Cd accumulating cultivar (Tianxingmi, H-Cd) in a hydroponic experimental system. In all treatments, H-Cd grew better than L-Cd and accumulated more Cd. As the Cd concentration increased, the H-Cd plants grew normally and their biomass increased, except in the 60 μM Cd treatment. The biomass of L-Cd decreased with increasing Cd concentrations. The highest Cd concentration in the roots, stems, and leaves of H-Cd was 950 mg/kg, 305 mg/kg, and 205 mg/kg, respectively, compared with 269 mg/kg, 62.9 mg/kg, and 74.8 mg/kg, respectively, in L-Cd. The Cd distribution differed between the two cultivars. Scanning and transmission electron microscopy and energy-dispersive spectrometry analyses showed that Cd was distributed across the entire cross section of H-Cd roots but largely restricted to the epidermal cells and the exodermis of L-Cd roots. The main Cd storage sites were the root apoplast, cell walls, and intercellular spaces in H-Cd and the root epidermal cells and the exodermis in L-Cd. In H-Cd leaves, Cd accumulated mainly in vacuoles of epidermal cells and, at high external Cd concentrations, in the vacuoles of mesophyll cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.