Abstract

The physico-chemical background of alkaloid allocation within plants is outlined and discussed exemplarily for pyrrolizidine alkaloids (PAs) and nicotine. The trigger for this discourse is the finding that, for example, PAs, which are taken up from the soil, are translocated in the xylem, whereas - when genuinely present in plants - they are allocated as N-oxides via phloem. Special emphasis is put on the impact of different pH values in certain compartments, as this entails significant changes in the relative lipophilic character of alkaloids: tertiary alkaloids diffuse readily through biomembranes, while the corresponding protonated alkaloids are retained in acidic compartments, i.e. vacuoles or xylem. Therefore, this phenomenon, well known as the 'ion trap mechanism', is also relevant for long-distance transport of alkaloids. Any efficient allocation of typical tertiary alkaloids within the phloem can thus be excluded. In contrast, due to their strongly increased hydrophilic properties, alkaloid-N-oxides or quarternary alkaloids cannot diffuse through biomembranes and, consequently, would be retained in the acidic xylem during translocation. The major aim of this paper is to sharpen the mind for the chemical peculiarities of alkaloids and to consider them adequately in forthcoming investigations on allocation of alkaloids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call