Abstract

Signal-mediated cell fusion is vital for colony development in filamentous fungi. Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that produces adhesive networks (traps) to capture nematodes. Here, we characterized Aoadv-1, Aoso, Aoham-6, and Aoham-5 of A. oligospora, homologs of proteins involved in cellular communication and fusion in the model fungus Neurospora crassa. The deletion of four genes resulted in the complete loss of cell fusion, and traps produced by mutants did not close to form mycelial rings but were still capable of capturing nematodes. The absence of these genes inhibits aerial mycelial extension, slows colony growth, and increases mycelial branching. In addition, the mutants showed reduced sporulation capacity and tolerance to oxidative stress, increased sensitivity to SDS, and disturbed lipid droplet accumulation and autophagy. In addition, transcriptome and metabolomic analyses suggested that Aoadv-1 and Aoso are involved in multiple cellular processes and secondary metabolism. Our results revealed that Aoadv-1, Aoso, Aoham-6, and Aoham-5 regulate mycelial growth and trap morphogenesis through cell fusion, which contributed to elucidating the molecular mechanisms of cellular communication regulating mycelial development and trap morphogenesis in NT fungi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call