Abstract

Bistheonellide A, an inhibitor of actin polymerization from the marine sponge Theonella sp., was introduced at a concentration of 100 nM into rat fibroblast of 2.4 x 10(4) cells/ml. Within 1 h, it disrupted stress fibers, accompanied by a marked change of the cell morphology, resulting in the formation of processes from the cell surface. Further incubation for 24 h in the presence of 100 nM bistheonellide A led to binucleation in most cells and subsequent inhibition of cell cycle progression. When bistheonellide A was withdrawn from the culture medium, binuclear cells began to grow again within 20 h and reverted to mononuclear morphology. Flow cytometric analysis fluorescence-activated cell sorting showed that 2C diploid DNA content in G1 phase was changed into 4C content of tetraploid for the bistheonellide A treated-cells in G1 phase and into 8C content during G2 and M phase. Therefore, we suggested that the bistheonellide A treatment inhibited cytokinesis, but not mitosis in M phase, and that treated cells were arrested at the early G1 phase. These effects of bistheonellide A on the cell cycle progression of 3Y1 fibroblast were also observed more prominently in cells synchronized in S phase with hydroxyurea. Cells in G0 phase were then activated by the addition of fetal calf serum in the presence of 100 nM bistheonellide A. Cell cycle progression of the bistheonellide A-treated cells was obviously slowed down or completely inhibited during G1 phase. These results reveal that actin filaments are not only essential to cytokinesis but also for promoting the progression of cell cycle G1 to S phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.