Abstract

The nature of transient and oscillatory outward currents (ITO and IOO) in fragmented smooth muscle cells (smooth muscle ball, SMB) from the longitudinal muscle layer of the rabbit ileum, was studied using a single electrode voltage clamp technique. With a high K+ solution containing 0.3 mM ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) in the pipette and physiological salt solution (PSS) in the bath, the Ca inward current was followed by a large transient outward current (ITO) and spontaneous oscillations of the outward current (IOO) on the sustained outward current (ISO) were elicited by a depolarizing pulse, positive to -30 mV (holding potential of -60 mV). When the internal fluid of the SMB was replaced with Cs+-tetraethylammonium+ (TEA+) solution, or when the concentration of EGTA in the pipette was increased to 4 mM, using the intracellular perfusion technique, both ITO and IOO were abolished. In Mn2+ solution both currents were also inhibited. Bath application of TEA+, procaine or A23187 completely blocked both ITO and IOO. Caffeine (0.3-1 mM) enhanced the amplitude of ITO and generations of IOO, and concentrations of caffeine over 3 mM transiently enhanced, but finally suppressed both these currents. These results suggest that the generation of ITO is closely related to the Ca2+ influx, whereas the generation of IOO may be initiated by an increment in the intracellular concentration of Ca2+, possibly released from store sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call