Abstract

Distinct biochemical, electrochemical and electromechanical coupling processes of pancreatic β-cells may well underlie different response patterns of insulin release from glucose and capsaicin stimulation. Intracellular Ca2+ levels increased rapidly and dose-dependently upon glucose stimulation, accompanied with about threefold rapid increases in cellular stiffness. Subsequently, cellular stiffness diminished rapidly and settled at a value about twofold of the baseline. Capsaicin caused a similar transient increase in intracellular Ca2+ changes. However, cellular stiffness increased gradually to about twofold until leveling off. The current study characterizes for the first time the biophysical properties underlying glucose-induced biphasic responses of insulin secretion, distinctive from the slow and single-phased stiffness response to capsaicin despite similar changes in intracellular Ca2+ levels. The integrated AFM nanorobotics and optical investigation enables the fine dissection of mechano-property from ion channel activities in response to specific and non-specific agonist stimulation, providing novel biomechanical markers for the insulin secretion process. From the Clinical EditorThis study characterizes the biophysical properties underlying glucose-induced biphasic responses of insulin secretion. Integrated AFM nanorobotics and optical investigations provided novel biomechanical markers for the insulin secretion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.