Abstract
The sea urchin embryo develops a calcitic endoskeleton through intracellular formation of amorphous calcium carbonate (ACC). Intracellular precipitation of ACC, requires [Formula: see text] concentrating as well as proton export mechanisms to promote calcification. These processes are of fundamental importance in biological mineralization, but remain largely unexplored. Here, we demonstrate that the calcifying primary mesenchyme cells (PMCs) use Na+/H+-exchange (NHE) mechanisms to control cellular pH homeostasis during maintenance of the skeleton. During skeleton re-calcification, pHi of PMCs is increased accompanied by substantial elevation in intracellular [Formula: see text] mediated by the [Formula: see text] cotransporter Sp_Slc4a10. However, PMCs lower their pHi regulatory capacities associated with a reduction in NHE activity. Live-cell imaging using green fluorescent protein reporter constructs in combination with intravesicular pH measurements demonstrated alkaline and acidic populations of vesicles in PMCs and extensive trafficking of large V-type H+-ATPase (VHA)-rich acidic vesicles in blastocoelar filopodial cells. Pharmacological and gene expression analyses underline a central role of the VHA isoforms Sp_ATP6V0a1, Sp_ATP6V01_1 and Sp_ATPa1-4 for the process of skeleton re-calcification. These results highlight novel pH regulatory strategies in calcifying cells of a marine species with important implications for our understanding of the mineralization process in times of rapid changes in oceanic pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.