Abstract

Substance P (SP) is known to act at supraspinal sites to influence pain sensitivity as well as to promote anxiety. The effects of SP could be mediated in part by actions in the periaqueductal gray (PAG) and the dorsal raphe nucleus (DRN), adjoining mesencephalic cell groups that are strategically positioned to influence both nociception and mood. Previous studies have indicated that SP regulates both enkephalin and serotonin neurotransmission in these brain regions. To determine the mechanism underlying the effects of SP in the PAG and DRN, the distribution of the principal receptor for SP, the neurokinin 1 (NK1) receptor, was examined with respect to other neurotransmitter markers. PAG neurons that had NK1 receptor immunolabeling were interdigitated with and received contacts from enkephalin-containing neurons. However, only a few (16/144; 11%) neurons with NK1 receptor also contained enkephalin immunoreactivity after colchicine treatment. In the DRN, dendrites containing NK1 receptor were selectively distributed in the dorsomedial subdivision. The majority (132/137; 96%) of these dendrites did not contain immunoreactivity for the serotonin-synthesizing enzyme tryptophan hydroxylase. In contrast, neuronal profiles with NK1 receptor in both the PAG and the DRN often contained immunolabeling for glutamate. Light and electron microscopic examination revealed that 48-65% of cell bodies and dendrites with NK1 receptor were dually immunolabeled for glutamate. These data suggest that SP directly acts primarily on glutamatergic neurons in the PAG and DRN. To a lesser extent, enkephalin-containing neurons may be targeted. Through these actions, it may subsequently influence activity of larger populations of neurons containing enkephalin as well as serotonin. This circuitry could contribute to, as well as coordinate, effects of SP on pain perception and mood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.