Abstract

During the metal hot working process, the dislocation density will vary with strain and strain rate, and the variation of the dislocation density will affect the grain evolution subsequently. The cellular automaton (CA) method is an effective technique used to simulate the grain evolution of materials. In this work, a dynamic recrystallization (DRX) model of titanium alloy TC11 under varied strain rates was established by the use of cellular automaton method and verified by experimental observation. Two types of loading processes called “begin fast and then slowly” and “begin slowly and then fast” were simulated to investigate the titanium alloy TC11 grain evolution processes during hot working. The simulation results are in good coincidence with experimental data. Both cellular automaton simulation and experimental results show that the flow stresses and DRX transformation percentage during hot working process of the TC11 alloy are closely related not only to the strain rate but also to the loading sequence. Compared to the “begin slowly and then fast” loading sequence, the flow stress with the “begin fast and then slowly” loading sequence is relatively smaller under the same strain rates, and the DRX transformation percentage is relatively larger.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.