Abstract

IntroductionGene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects. We tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE), tenascin-C (TNC), and actinin-3 (ACTN3) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level athletes.MethodsMuscle biopsies were collected from m. vastus lateralis of three distinct phenotypes; endurance athletes (n = 29), power athletes (n = 17), and untrained non-athletes (n = 63). Metabolism-, and contraction-related cellular parameters (such as capillary-to-fiber ratio, capillary length density, volume densities of mitochondria and intramyocellular lipid, fiber mean cross sectional area (MCSA) and volume densities of myofibrils) and the volume densities of sarcoplasma were analyzed by quantitative electron microscopy of the biopsies. Gene polymorphisms of ACE (I/D (insertion/deletion), rs1799752), TNC (A/T, rs2104772), and ACTN3 (C/T, rs1815739) were determined using high-resolution melting polymerase chain reaction (HRM-PCR). Genotype distribution was assessed using Chi2 tests. Genotype and phenotype effects were analyzed by univariate or multivariate analysis of variance and post hoc test of Fisher. P-values below 0.05 were considered statistically significant.ResultsThe athletes demonstrated the specialization of metabolism- and contraction-related cellular parameters. Differences in cellular parameters could be identified for genotypes rs1799752 and rs2104772, and localized post hoc when taking the interaction with the phenotype into account. Between endurance and power athletes these concerned effects on capillary length density for rs1799752 and rs2104772, fiber type distribution and volume densities of myofibrils (rs1799752), and MSCA (rs2104772). Endurance athletes carrying the I-allele of rs1799752 demonstrated 50%-higher volume densities of mitochondria and sarcoplasma, when power athletes that carried only the D-allele showed the highest fiber MCSAs and a lower percentage of slow type muscle fibers.DiscussionACE and tenascin-C gene polymorphisms are associated with differences in cellular aspects of muscle metabolism and contraction in specifically-trained high level athletes. Quantitative differences in muscle fiber type distribution and composition, and capillarization in knee extensor muscle explain, in part, identified associations of the insertion/deletion genotypes of ACE (rs1799752) with endurance- and power-type Sports.

Highlights

  • Gene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects

  • We identified differences in muscle composition that were associated with an interaction between the phenotype and gene polymorphisms rs1799752 and rs2104772

  • With the former association, a higher mean cross sectional area (MCSA) of muscle fibers was identified for power athletes with the angiotensin converting enzyme (ACE)-D/D respective to the ACE-I/D genotype (Figure 4D). These findings suggest that the over-representation of D/D genotypes in power-type athletes (Woods et al, 2001; Flueck et al, 2010), is related to a negative association between the ACE-I allele and the concentration of myofibrils in muscle fibers in this phenotype, which reflects the main influence of the encoded ACE system on muscle fiber growth (Verbrugge et al, 2018)

Read more

Summary

Introduction

Gene polymorphisms are associated with athletic phenotypes relying on maximal or continued power production and affect the specialization of skeletal muscle composition with endurance or strength training of untrained subjects. Skeletal muscle is a critical determinant of Sports performance This influence has its origin in the force producing capacity of contracting muscle which is fueled by the conversion of metabolic substrates. The performance of skeletal muscles can be developed (or maximized) by physical training-through a feed forward mechanism that remodels muscle composition In this respect, maximal performance is usually improved with a high-load, low-repetitive type of training whereas fatigue resistance is ameliorated to a considerable extent by a highly-repetitive low-load type of training (Wernbom et al, 2007; Flueck and Eilers, 2010). An increase in fatigue resistance can be explained by increases in capillary-to-fiber ratio or capillary length density in locomotor muscle, in conjunction with an elevated volume density of mitochondria and intramyocellular lipid (Oberholzer et al, 1976; Ingjer, 1979; Speckmann et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call