Abstract
Background: In the past decade, the identification and characterization of antiviral genes with the ability to interfere with virus replication has established cell-intrinsic innate immunity as a third line of antiviral defense in addition to adaptive and classical innate immunity. Understanding how cellular factors have evolved to inhibit HIV-1 reveals particularly vulnerable points of the viral replication cycle. Many, but not all, antiviral proteins share type I interferon-upregulated expression and sensitivity to viral counteraction or evasion measures. Whereas well-established restriction factors interfere with early post-entry steps and release of HIV-1, recent research has revealed a diverse set of proteins that reduce the infectious quality of released particles using individual, to date poorly understood modes of action. These include induction of paucity of mature glycoproteins in nascent virions or self-incorporation into the virus particle, resulting in poor infectiousness of the virion and impaired spread of the infection. Conclusion: A better understanding of these newly discovered antiviral factors may open new avenues towards the design of drugs that repress the spread of viruses whose genomes have already integrated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.