Abstract

Cassia occidentalis L. is widely used in the world in traditional medicine and especially in some African countries for the treatment of various diseases. The aim of this study was to report the microscopic features, the chromatographic fingerprints and the cellular antioxidant activity and the peroxidase inhibition of infusions from different parts of this plant. Microscopically, leaf can be characterized by cells of the spongy mesophyll and parenchyma numerous cluster crystals of calcium oxalate, paracytic stomata, isolated calcium oxalate cluster crystals, covering and glandular trichomes, scalariform vessels, polyedric starch granules, lignified fibers; flowers by abundant covering and glandular trichomes, spirally thickened vessels and associated parenchyma, abundant pollen grains. Seeds were characterized by pluricellular non-glandular trichomes, epidermis of the testa with underlying oil cells, parenchymatous layers of the testa, thicker-walled cells of the endosperm, pollen grain. Phytochemical analysis revealed the presence of phenolic acids, flavonoids, iridoids, tannins and terpenes. TLC fingerprints of different parts were different and characteristic. They showed the presence of glycosylated flavonoids and phenolic acids as main phytochemicals for flowers, leaves and seedpods. ABTS and DPPH assays showed that infusion extracts have the ability to scavenge free radicals connected with their IC50 values ranging from 21.43 ± 1.25 to 566.24 ± 176.7 mg·mL-1. All extracts showed a weaker capacity to scavenge DPPH radical. Aqueous extracts displayed high cellular antioxidant activity at the concentrations range of 1 - 20 μg·mL-1 using LO-12 on monocytes HL 60. Flower and leave extracts showed more efficient effects on extracellular ROS production. Phenolic compounds could be major contributors to antioxidant activity of infusions of Cassia parts. In MPO (Myeloperoxidase) direct technique, all infusion extracts exhibited a dose-dependent inhibitory effect on MPO activity in the range concentrations of 1 to 20 μg·mL-1 with the leaves and flowers the most active. Obtained results support the potential therapeutic interest of all aerial parts of Cassia and could justify their use in traditional medicine and local nutraceutical resources.

Highlights

  • Cassia occidentalis L. (Caesalpiniaceae) is widely used in the world in traditional medicine and especially in some African countries for the treatment of various diseases

  • Leaves were characterized by upper epidermis in surface view with part of the underlying palisade, cells of the spongy mesophyll containing cluster crystals of calcium oxalate, lower epidermis of the leaf in surface view showing paracytic stomata, parenchyma containing numerous calcium oxalate crystals, isolated calcium oxalate cluster crystals, covering and glandular trichomes, scalariform vessels, polyedric starch granules, lignified fibers

  • The diagnostic characters of the seeds were: pluricellular non glandular trichomes, cork, epicarp in surface view showing stomata, epidermis of the testa with underlying oil cells, part of the pericarp showing the innermost layer of the mesocarp, the endocarp, parenchymatous layers of the testa in surface view, epiderms and palisade of the cotyledons in sectional view, thicker-walled cells of the endosperm, pollen grain

Read more

Summary

Introduction

Cassia occidentalis L. (Caesalpiniaceae) is widely used in the world in traditional medicine and especially in some African countries for the treatment of various diseases. Cassia occidentalis (Senna occidentalis) is an Ayurvedic plant with important medicinal values (Figure 1). It is known by various names, e.g. Coffee senna, Fetid cassia and Negro Coffee [1] [2]. In DRC, it is known by its various vernacular names Pola ekasakasenge, Mbandanse, Limingolanta, Dombati, Segbazolo: Mbengelimo: Bonungolata: Bolebe bonse, Betshobe awane and Lukunda Bajanyi [3]. This plant is widely consumed by animals and humans in the world. It is the main ingredient of Liv. 52, a hepatoprotective polyherbal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call