Abstract

Specialized ommatidia harboring polarization-sensitive photoreceptors exist in the 'dorsal rim area' (DRA) of virtually all insects. Although downstream elements have been described both anatomically and physiologically throughout the optic lobes and the central brain of different species, little is known about their cellular and synaptic adaptations and how these shape their functional role in polarization vision. We have previously shown that in the DRA of Drosophila melanogaster, two distinct types of modality-specific 'distal medulla' cell types (Dm-DRA1 and Dm-DRA2) are post-synaptic to long visual fiber photoreceptors R7 and R8, respectively. Here we describe additional neuronal elements in the medulla neuropil that manifest modality-specific differences in the DRA region, including DRA-specific neuronal morphology, as well as differences in the structure of pre- or post-synaptic membranes. Furthermore, we show that certain cell types (medulla tangential cells and octopaminergic neuromodulatory cells) specifically avoid contacts with polarization-sensitive photoreceptors. Finally, while certain transmedullary cells are specifically absent from DRA medulla columns, other subtypes show specific wiring differences while still connecting the DRA to the lobula complex, as has previously been described in larger insects. This hints towards a complex circuit architecture with more than one pathway connecting polarization-sensitive DRA photoreceptors with the central brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.