Abstract

Toxin production and sporulation are key determinants of pathogenesis in Clostridia. Toxins cause the clinical manifestation of clostridial diseases, including diarrhea and colitis, tissue damage, and systemic effects on the nervous system. Spores ensure long-term survival and persistence in the environment, act as infectious agents, and initiate the host tissue colonization leading to infection. Understanding the interplay between toxin production and sporulation and their coordination in bacterial cells and cultures provides novel intervention points for controlling the public health and food safety risks caused by clostridial diseases. We demonstrate environmentally driven cellular heterogeneity in botulinum neurotoxin and spore production in Clostridium botulinum type E populations and discuss the biological rationale of toxin and spore production in the pathogenicity and ecology of C. botulinum. The results invite to reassess the epidemiology of botulism and may have important implications in the risk assessment and risk management strategies in food processing and human and animal health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.