Abstract

The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained through a multi-imaging approach allow an integrated view of the dynamic developmental processes that occur in a multi-layered boundary AZ and provide evidence for distinct regulatory mechanisms that underlie oil palm fruit AZ development and function.

Highlights

  • Plant organ abscission is a highly regulated developmental process that results in the loss of various organs throughout the life cycle of the plant

  • The primary abscission zone (AZ) was observed at 30 days after pollination (DAP) in fruit sections stained with toluidine blue and consisted of small densely cytoplasmic cells as previously described (Figure 1A; Henderson and Osborne, 1990)

  • To assess the intra- and extra-cellular changes that occur in the AZ during abscission, we examined ripe fruit AZ cells before and after cell separation induced by ethylene (Roongsattham et al, 2012)

Read more

Summary

Introduction

Plant organ abscission is a highly regulated developmental process that results in the loss of various organs throughout the life cycle of the plant. The abscission process is complex with many overlapping points of regulation, and involves the integration of multiple external and internal signals that depend on the overall status of the plant (Roberts et al, 2002; Estornell et al, 2013). Seed and fruit abscission are important to coordinate seed dispersal for plant reproductive success. Central to the process is the role of the abscission zone (AZ) where cell separation occurs that leads to organ detachment. Cell separation that occurs during abscission is a tissue and cellular process, which involves the differentiation of the AZ located at the base of the organ to be shed. The structural characteristics of pectin and how it functions during cell separation underlying organ abscission are not completely understood

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call