Abstract
Pleural and pulmonary fibrosis (asbestosis) are ramifications of occupational exposures to asbestos fibers, a diverse family of ubiquitous, naturally-occurring minerals. The pathogenesis of asbestos-associated fibrosis involves the participation of a number of cell types and is characterized by an early and persistent inflammatory response that involves the generation of oxidants, growth factors, chemokines, and cytokines. These mediators may also contribute directly to cell injury, proliferation, and fibrogenesis. After interaction with cells, asbestos fibers trigger a number of signaling cascades involving mitogen-activated protein kinases (MAPK) and nuclear factor kappa-B (NF-kappaB). Activation of transcription factors such as NF-kappaB and activator protein-1 (AP-1) may be linked to increases in early response genes (e.g., c-jun and c-fos) which govern proliferation, apoptosis, and inflammatory changes in the cells of the lung. The goal of this article is to review the cellular and molecular mechanisms of asbestos-induced fibrosis that may be critical to the development of effective treatment regimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.