Abstract

Influenza vaccination is recommended for HAART-treated HIV patients to prevent influenza illness and complications. Due to the known ability of T cells to mediate a broadly cross-reactive response, vaccination effectiveness in cell-mediated immune (CMI) response induction is a main objective in new influenza vaccination strategies. Nevertheless, data on CMI responses after pandemic vaccination in HIV subjects are still missing. In the present study, the ability of a single dose of adjuvanted pandemic influenza vaccine to induce humoral and CMI responses was compared in HAART-treated HIV patients and in healthcare workers. Healthcare workers (HCW, n=65) and HAART-treated HIV patients (HIV, n=67) receiving pandemic vaccination were enrolled and analyzed before (t0) and after (t1) vaccination. The analysis of strain-specific humoral response was performed by HAI assay; CMI against pandemic (A/H1N1/Cal/09) and seasonal (A/H1N1/Brisb/07 and A/H3N2/Brisb/07) strains was analyzed by ELISpot and intracellular staining followed by flow cytometry. Pandemic vaccination was effective in inducing both humoral and cell-mediated responses in HAART-treated HIV patients as well as in HCWs. A large fraction of both HCWs and HIV-infected patients showed a T cell response to the pandemic strain before vaccination, suggesting possible previous exposure to A/H1N1/pdm/09 and/or cross-reactive T cells. Notably, pandemic vaccine was also able to boost cross-reactive immune responses to seasonal strains. Finally, a weaker boost of both strain-specific and cross-reactive T cell immunity was found in individuals showing a higher baseline response. These data show the effectiveness of adjuvanted pandemic vaccine to induce both humoral and cellular (strain-specific and cross-reactive) immune responses in HIV patients similar to HCWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.