Abstract

To allow the rational design of effective treatment strategies for human mitochondrial disorders, a proper understanding of their biochemical and pathophysiological aspects is required. The development and evaluation of these strategies require suitable model systems. In humans, inherited complex I (CI) deficiency is one of the most common deficiencies of the mitochondrial oxidative phosphorylation system. During the last decade, various cellular and animal models of CI deficiency have been presented involving mutations and/or deletion of the Ndufs4 gene, which encodes the NDUFS4 subunit of CI. In this review, we discuss these models and their validity for studying human CI deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.