Abstract

Antisense oligodeoxynucleotides offer potential as therapeutic agents to inhibit gene expression. Recent evidence indicates that oligodeoxynucleotides designed to target specific nucleic acid sequences can interact nonspecifically with proteins. This report describes the interactive capabilities of phosphorothioate oligodeoxynucleotides of defined sequence and length with two essential protein tyrosine receptors, flk-1 and epidermal growth factor receptor (EGFR), and their effects on receptor signaling in a transfected and tumor cell line, respectively. Phosphorothioate oligodeoxynucleotides bound to the cell surface, as demonstrated by fluorescence-activated cell-sorter analyses (FACS), and perturbed receptor activation in the presence and absence of cognate ligands, EGF (EGFR) and vascular endothelial growth factor (flk-1), in phosphorylation assays. Certain phosphorothioate oligodeoxynucleotides interacted relatively selectively with flk-1 and partially blocked the binding of specific anti-receptor monoclonal antibodies to target sites. They stimulated EGFR phosphorylation in the absence of EGF but antagonized ligand-mediated activation of EGFR and flk-1. In vivo studies showed that a nonspecific phosphorothioate oligodeoxynucleotide suppressed the growth of glioblastoma in a mouse model of tumorigenesis. These results emphasize the capacity of phosphorothioate oligodeoxynucleotides to interact with cells in a sequence-selective nonantisense manner, while associating with cellular membrane proteins in ways that can inhibit cellular metabolic activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.