Abstract

This paper presents the results of recent efforts to improve the biocompatibility and integration of implantable bioMEMS devices. Laser micro-grooves and micro-grids were irradiated onto silicon surfaces using ultraviolet lasers. The micro-textured surfaces were then coated with nano-scale layers of titanium to promote improved biocompatibility. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells through scanning electron microscopy. Finally, the implications of the results are discussed for integration of silicon-based microelectronics and sensors into biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.