Abstract
PTH is an 84-amino acid protein. Occupancy of its cognate receptor generally results in activation of adenylyl cyclase and/or phosphoinositide-specific phospholipase Cbeta (PLCbeta). In the kidney, PTH receptors are present on proximal and distal tubule cells. In proximal tubules, PTH induces calcium signaling, typified by a transient rise in intracellular calcium ([Ca2+]i) and inositol trisphosphate formation, but does not affect calcium absorption. By contrast, in distal tubules, PTH increases calcium absorption that is associated with a slow and sustained rise in [Ca2+]i, but does not stimulate phospholipase C (PLC) or cause inositol trisphosphate accumulation. Nonetheless, stimulation of distal calcium transport requires activation of protein kinase C (PKC) and protein kinase A. We now characterize the origin of the differential effects of ligand occupancy by using synthetic human PTH analogs that preferentially activate adenylyl cyclase and/or PLCbeta. We further tested the hypothesis that phospholipase D is responsible for PKC activation in distal tubule cells. PTH-(1-31) increased [Ca2+]i in distal tubule but not in proximal tubule cells, whereas PTH-(3-34) caused a partial increase in [Ca2+]i in proximal cells, but had no effect in distal cells. PTH-(7-34) blocked increases in [Ca2+]i in distal tubule cells stimulated by PTH-(1-34) and PTH-(1-31). The PLC inhibitor U73122 abolished the PTH-induced rise in [Ca2+]i and inositol trisphosphate formation by proximal tubule cells, but had no effect on PTH-stimulated Ca2+ uptake by distal tubule cells. These results support the view that activation of PKC by PTH in distal tubule cells does not involve PLCbeta. PTH did, however, activate phospholipase D with attendant formation of diacylglycerol in distal cells. As activation of PKC is required for induction of calcium transport by PTH, we conclude that PTH receptors are capable of activating multiple phospholipases and that the structural requirements for such activation differ in proximal and distal tubule cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.