Abstract

A comparison of the responses of extracellular pH, buffering capacity and actin cytoskeleton in autotroph and heterotroph Chenopodium rubrum cells to heat shock revealed cell-specific reactions: alkalinization caused by the heat shock at 25-35 degrees C was higher in heterotroph cells and characterized by heat shock-induced changes in the actin cytoskeleton and ring formation at 35-37 degrees C. Rings (diameter up to 3 mum) disappeared and extracellular pH recovered after the heat-shocked cells were transferred into control medium. At 41 degrees C, no rings but a network of coarse actin filaments were induced; at higher temperatures, fragmentation of the actin cytoskeleton and release of buffering compounds occurred, indicating sudden membrane leakage at 45-47 degrees C. The calcium chelator EGTA [ethylene-glycol-bis(beta-aminoethyl-ether)-N,N,N',N'-tetraacetic-acid] increased the frequency of heat shock-induced rings. Ionophore (10 microM nigericin) and the sodium/proton antiport blocker [100 microM 5-(N-ethyl-N-isopropyl)-amiloride] mimicked the effect of the 37 degrees C heat shock. The cytoskeleton inhibitors latrunculin B, cytochalasin D and 2,3-butanedione monoxime inhibited ring formation but not alkalinization. In autotroph cells, the treatment with nigericin (10 microM) produced rings, although the actin cytoskeleton was not affected by temperatures up to 45 degrees C. We conclude that Chenopodium cells express a specific temperature sensor that has ascendancy over the organization of the actin cytoskeleton; this is probably a temperature- and potential-sensitive proton-transporting mechanism that is dependent on the culture conditions of the heterotroph cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.