Abstract
Abstract Plasmids containing single chain Fv (scFv) non-neutralizing human anti-HIV-1 gp41 Ab cDNA, with or without endoplasmic reticulum (ER) or trans-Golgi network (TGN) retention signals, were constructed. Stable transfectants expressing these scFvs then were generated from COS-7 cells and HIV-1-susceptible CD4+ human T cells (Jurkat). scFv without a retention signal was secreted from cells, whereas scFv with an ER or TGN retention signal remained primarily within targeted intracellular compartments. The expression of scFv, scFv-ER, and scFv-TGN did not adversely affect the appearance of uninfected cells, as measured by growth rate or CD4 expression. Pulse-chase experiments revealed that the t1/2 of scFv-ER and scFv-TGN within cells was greater than 24 h and less than 9 h, respectively. The scFv-ER and scFv-TGN bound HIV gp160, and the scFv-ER-gp160 and the scFv-TGN-gp160 complexes were stable within HIV-infected transfectants. Further studies revealed that the maturation processing of gp160 into gp120 and gp41 was blocked in the scFv-ER transfectants, but not in the scFv-TGN transfectants. Moreover, HIV replication, as measured by p24, was inhibited by up to 99% in cells transfected with scFv-ER or scFv-TGN, but was not inhibited in cells transfected with the secretory form of scFv. It is concluded that the targeting of non-neutralizing anti-HIV-1 Abs to specific intracellular compartments blocks HIV replication and represents a potential therapeutic strategy for protecting uninfected lymphopoietic stem cells from HIV-1-infected patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.