Abstract
The plasma membrane (PM) protects cells from extracellular threats and supports cellular homeostasis. Some pathogens produce pore-forming toxins (PFTs) that disrupt PM integrity by forming transmembrane pores. High PFT concentrations cause massive damage leading to cell death and facilitating infection. Sub-lytic PFT doses activate repair mechanisms to restore PM integrity, support cell survival and limit disease. Shedding of extracellular vesicles (EVs) has been proposed as a key mechanism to eliminate PFT pores and restore PM integrity. We show here that cholesterol-dependent cytolysins (CDCs), a specific family of PFTs, are at least partially eliminated through EVs release, and we hypothesize that proteins important for PM repair might be included in EVs shed by cells during repair. To identify new PM repair proteins, we collected EVs released by cells challenged with sub-lytic doses of two different bacterial CDCs, listeriolysin O and pneumolysin, and determined the EV proteomic repertoire by LC-MS/MS. Intoxicated cells release similar EVs irrespectively of the CDC used. Also, they release more and larger EVs than non-intoxicated cells. A cluster of 70 proteins including calcium-binding proteins, molecular chaperones, cytoskeletal, scaffold and membrane trafficking proteins, was detected enriched in EVs collected from intoxicated cells. While some of these proteins have well-characterized roles in repair, the involvement of others requires further study. As proof of concept, we show here that Copine-1 and Copine-3, proteins abundantly detected in EVs released by intoxicated cells, are required for efficient repair of CDC-induced PM damage. Additionally, we reveal here new proteins potentially involved in PM repair and give new insights into common mechanisms and machinery engaged by cells in response to PM damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.