Abstract

Auditory hair cell defect is a major cause of hearing impairment, often leading to spiral ganglia neuron (SGN) degeneration. The cell loss that follows is irreversible in mammals, because inner ear hair cells (HCs) have a limited capacity to regenerate. Here, we report that in the adult brain of both rodents and humans, the ependymal layer of the lateral ventricle contains cells with proliferative potential, which share morphological and functional characteristics with HCs. In addition, putative neural stem cells (NSCs) from the subventricular zone of the lateral ventricle can differentiate into functional SGNs. Also important, the NSCs can incorporate into the sensory epithelia, demonstrating their therapeutic potential. We assert that NSCs and edendymal cells can undergo an epigenetic functional switch to assume functional characteristics of HCs and SGNs. This study suggests that the functional plasticity of renewable cells and conditions that promote functional reprogramming can be used for cell therapy in the auditory setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.