Abstract
Let $G$ be a reductive algebraic group over a field of positive characteristic. In this paper we explore the relations between the behaviour of tilting modules for $G$ and certain Kazhdan-Lusztig for the affine Weyl group associated with $G$. In the corresponding quantum case at a complex root of unity V. Ostrik has shown that the weight defined in terms of tilting modules coincide with right Kazhdan-Lusztig cells. Our method consists in comparing our modules for $G$ with quantized modules for which we can appeal to Ostrik's results. We show that the minimal Kazhdan-Lusztig cell breaks up into infinitely many modular cells which in turn are determined by bigger cells. At the opposite end we call attention to recent results by T. Rasmussen on tilting modules corresponding to the cell next to the maximal one. Our techniques also allow us to make comparisons with the mixed quantum case where the quantum parameter is a root of unity in a field of positive characteristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.