Abstract

Biofilm formation by marine hydrocarbonoclastic bacteria is commonly observed and has been recognized as an important mechanism for the biodegradation of hydrocarbons. In order to colonize new oil-water interfaces, surface-attached communities of hydrocarbonoclastic bacteria must release cells into the environment. Here we explored the physiology of cells freshly dispersed from a biofilm of Marinobacter hydrocarbonoclasticus developing at the hexadecane-water interface, by combining proteomic and physiological approaches. The comparison of the dispersed cells' proteome with those of biofilm, logarithmic- and stationary-phase planktonic cells indicated that dispersed cells had lost most of the biofilm phenotype and expressed a specific proteome. Two proteins involved in cell envelope maturation, DsbA and CtpA, were exclusively detected in dispersed cells, suggesting a reshaping of the cell envelopes during biofilm dispersal. Furthermore, dispersed cells exhibited a higher affinity for hexadecane and initiated more rapidly biofilm formation on hexadecane than the reference planktonic cells. Interestingly, storage wax esters were rapidly degraded in dispersed cells, suggesting that their observed physiological properties may rely on reserve mobilization. Thus, by promoting oil surface colonization, cells emigrating from the biofilm could contribute to the success of marine hydrocarbonoclastic bacteria in polluted environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.