Abstract
We study the nondeterministic cell-probe complexity of static data structures. We introduce cell-probe proofs (CPP), a proof system for the cell-probe model, which describes verifications instead of computations in the cell-probe model. We present a combinatorial characterization of CPP. With this novel tool, we prove the following lower bounds for the nondeterministic cell-probe complexity of static data structures: We show that there exist data structure problems which have super-constant nondeterministic cell-probe complexity. In particular, we show that for the exact nearest neighbor search (NNS) problem or the partial match problem in high dimensional Hamming space, there does not exist a static data structure with Poly(n) cells, each of which contains no(1)bits, such that the nondeterministic cell-probe complexity is O(1), where nis the number of points in the data set for the NNS or partial match problem. For the polynomial evaluation problem, if single-cell nondeterministic probes are sufficient, then either the size of a single cell is close to the size of the whole polynomial, or the total size of the data structure is close to that of a naive data structure that stores results for all possible queries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.