Abstract
Introduction: The impermeability of biological membranes is a major obstacle in drug delivery; however, some peptides have transition capabilities of biomembranes. In recent decades, cell-penetrating peptides (CPPs) have been introduced as novel biocarriers that are able to translocate into the cells. CPPs are biologically potent tools for non-invasive cellular internalization of cargo molecules. Nevertheless, the non-specificity of these peptides presents a restriction for targeting drug delivery; therefore, a peptidic nanocarrier sensitive to matrix metalloproteinase (MMP) has been prepared, called activatable cell-penetrating peptide (ACPP). In addition to the cell-penetrating peptide dendrimer (DCPP), other analogues of CPPs have been synthesized. Methods: In this study, the most recent literature in the field of biomedical application of CPPs and their analogues, ACPP and DCCP, were reviewed. Results: This review focuses on CPP and its analogues, ACPP and DCPP, as novel nanocarriers for drug delivery. In addition, nanoconjugates and bioconjugates of these peptide sequences are discussed. Conclusion: DCCP, branched CPPs, compared to linear peptides have advantages such as resistance to rapid biodegradation, high loading capacities and large-scale production capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.