Abstract
Cellobiose dehydrogenase catalyses the oxidation of aldoses--a simple reaction, a boring enzyme? No, neither for the envisaged bioelectrochemical applications nor mechanistically. The catalytic cycle of this flavocytochrome is complex and modulated by its flexible cytochrome domain, which acts as a built-in redox mediator. This intramolecular electron transfer is modulated by the pH, an adaptation to the environmental conditions encountered or created by the enzyme-producing fungi. The cytochrome domain forms the base from which electrons can jump to large terminal electron acceptors, such as redox proteins, and also enables by that path direct electron transfer from the catalytically active flavodehydrogenase domain to electrode surfaces. The application of electrochemical techniques to the elucidation of the molecular and catalytic properties of cellobiose dehydrogenase is discussed and compared to biochemical methods. The results lead to valuable insights into the function of this cellulose-bound enzyme, but also form the basis of exciting applications in biosensors, biofuel cells and bioelectrocatalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.