Abstract

Label-free cell separation and sorting in a microfluidic system, an essential technique for modern cancer diagnosis, resulted in high-throughput single-cell analysis becoming a reality. However, designing an efficient cell detection model is challenging. Traditional cell detection methods are subject to occlusion boundaries and weak textures, resulting in poor performance. Modern detection models based on convolutional neural networks (CNNs) have achieved promising results at the cost of a large number of both parameters and floating point operations (FLOPs). In this work, we present a lightweight, yet powerful cell detection model named CellNet, which includes two efficient modules, CellConv blocks and the h-swish nonlinearity function. CellConv is proposed as an effective feature extractor as a substitute to computationally expensive convolutional layers, whereas the h-swish function is introduced to increase the nonlinearity of the compact model. To boost the prediction and localization ability of the detection model, we re-designed the model’s multi-task loss function. In comparison with other efficient object detection methods, our approach achieved state-of-the-art 98.70% mean average precision (mAP) on our custom sea urchin embryos dataset with only 0.08 M parameters and 0.10 B FLOPs, reducing the size of the model by 39.5× and the computational cost by 4.6×. We deployed CellNet on different platforms to verify its efficiency. The inference speed on a graphics processing unit (GPU) was 500.0 fps compared with 87.7 fps on a CPU. Additionally, CellNet is 769.5-times smaller and 420 fps faster than YOLOv3. Extensive experimental results demonstrate that CellNet can achieve an excellent efficiency/accuracy trade-off on resource-constrained platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call