Abstract
Cell-lineage tracing is used to study embryo development and stem-cell differentiation as well as to document tumor cell heterogeneity. Cre recombinase-mediated cell labeling is the preferred approach; however, its utility is restricted by when and where DNA recombination takes place. We generated a photoactivatable Cre recombinase by replacing a critical residue in its active site with a photocaged lysine derivative through genetic code expansion in zebrafish embryos. This allows high spatiotemporal control of DNA recombination by using 405 nm irradiation. Importantly, no background activity is seen before irradiation, and, after light-triggered removal of the caging group, Cre recombinase activity is restored. We demonstrate the utility of this tool as a cell-lineage tracer through its activation in different regions and at different time points in the early embryo. Direct control of Cre recombinase by light will allow more precise DNA recombination, thereby enabling more nuanced studies of metazoan development and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.