Abstract

Linear double-stranded DNA polymers coding for synthetic genes immobilized on a surface form a brush as a center for cell-free gene expression, with DNA density 102-103 fold higher than in bulk solution reactions. A brush localizes the transcription-translation machinery in cell extracts or in cell-free reconstituted reactions from purified components, creating a concentrated source of RNA and proteins. Newly synthesized molecules can form circuits regulating gene expression in the same brush or adjacent ones. They can also assemble into functional complexes and machines such as ribosomal units, then analyzed by capture on prepatterned antibodies or by cascaded reactions. DNA brushes are arranged as a single center or multiple ones on a glass coverslip, in miniaturized compartments carved in silicon wafers, or in elastomeric microfluidic devices. Brushes create genetically programmable artificial cells with steady-state dynamics of protein synthesis. Here, we provide the basic procedure for surface patterning, DNA immobilization, capture of protein products on antibody traps and fluorescent imaging. The method of DNA brush surface patterning enables simple parallelization of cell-free gene expression reactions for high throughput studies with increased imaging sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call