Abstract

AbstractTo understand the regulatory mechanism of erythropoietin (EPO) receptor (EPOR) gene expression, the effect of EPO on the steady-state level of EPOR mRNA was examined using the human EPO-dependent cell line UT-7 as a model system. We found that the treatment of UT-7 cells with EPO resulted in a transient decrease of the EPOR mRNA level. This transient downregulation was also induced by stimulation with granulocyte-macrophage colony-stimulating factor (GM-CSF ), another stimulator of UT-7 cell growth. These results raised the possibility that EPOR gene expression is in part related to cell growth. Moreover, it was found that EPO-induced downregulation of EPOR mRNA level was preceded by a transient downregulation of GATA-1 mRNA. To examine the relationship between the expression of EPOR, GATA-1, and GATA-2 mRNA levels and the cell cycle, logarithmically growing UT-7 cells were centrifugically fractionated according to the cell-cycle phase. Both EPOR and GATA-1 mRNA levels, but not the GATA-2 mRNA level, concomitantly decreased at the G0/G1phase and increased at the S and G2/M phases. An electrophoretic mobility shift assay (EMSA) showed that in EPO-stimulated UT-7 cells, the dynamic changes in EPOR gene expression paralleled the GATA-1 DNA-binding activity to the oligonucleotide probe containing a GATA-binding site located at the promoter region of the EPOR gene. These findings suggest that the regulation of EPOR mRNA level is mainly associated with GATA-1 gene expression in UT-7 cells undergoing proliferation, and that these serial events are under the control of, or related to, the cell cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call