Abstract

Mating-specific adhesion between haploid yeast cells of opposite mating type (a and alpha) was studied by using a quantitative agar plate assay. Washed a and alpha cells that had not previously been exposed to their respective opposite mating type ("naive" cells) adhered relatively weakly. In water, only 5 to 10% of the a cells stuck tightly enough to alpha cells to give rise subsequently to diploid clones on the assay plates. Under optimum conditions (pH 6 to 7, at least 0.1 M Nacl or 0.01 M Mg(2+)), there was about 20% adhesion. Nevertheless, this weak binding defined a mating type-specific interaction because, even under optimum conditions, the homologous interactions (a with a and alpha with alpha) yielded only 3 to 5% cohesion. In contrast to these results, washed cells that had been preincubated in the cell-free culture medium of their opposite mating type ("preconditioned" cells) adhered quite strongly. The degree of adhesion between preconditioned cells (40 to 50%) was essentially unaffected by extremes of ionic strength, pH, and temperature and by the absence of divalent cation. This strong interaction was also mating type specific since cohesion between preconditioned cells of like mating type was only about 5%. The increase in agglutinability was obtained if only the a cells were preconditioned and could be induced by highly purified preparations of natural or synthetically prepared alpha-factor, an oligopeptide pheromone released by the alpha cells. The appearance of increased adhesiveness was blocked by an inhibitor of RNA synthesis and by an inhibitor of protein synthesis, but not by an inhibitor of polysaccharide synthesis. Adhesion between preconditioned cells could be inhibited by pretreatment with functionally univalent succinylated concanavalin A or with extracts from preconditioned cells of the opposite mating type. These results confirm in a quantitative manner that the recognition between conjugating cells of S. cerevisiae is a developmentally regulated event that is under the control of the mating type locus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call