Abstract

Glycosyl transferase ectoenzyme systems that transfer galactose, glucose, N-acetylglucosamine, N-acetylneuraminic acid, mannose, and fucose have been detected on vegetative cells and gametes of Chlamydomonas moewusii. Gametes have higher levels of activity of the transferase ectoenzyme systems than morphologically identical vegetative cells, as determined by transfer of monosaccharide onto endogenous cell surface acceptors. When (plus) and (minus) gametes are mixed, there is a significant increase in the activity of transferase ectoenzyme systems. No enhancement in activity of transferase ectoenzyme systems occurs when (plus) and (minus) vegetative cells are mixed. Flagellar membrane vesicles obtained from (plus) and (minus) gametes show high activity of transferase ectoenzyme systems per mg of protein and also demonstrate enhanced activity upon mixing. Therefore, glycosyl transferases and acceptors seem to be located on the flagellar membrane and appear to have a function particularly related to gametic cells. The mechanism of cellular adhesion or recognition proposed by Roseman (1970, Chem. Phys. Lipids 5, 270-297), involving glycosyl transferases and acceptors, is strongly suggested by our data for the mating reaction in Chlamydomonas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.