Abstract

The cell wall organization of leaf sheath fibers in different palm species was studied with polarized light microscopy (PLM) and transmission electron microscopy (TEM). The secondary wall of the fibers consisted of only two layers, S1 and S2. The thickness of the S1 layer in leaf sheath fibers from the different palm species ranged from 0.31 to 0.90 μm, with a mean value of 0.57 μm, which was thicker than that of tracheids and fibers in secondary xylem of conifers and dicotyledons. The thickness of the S2 layer ranged from 0.44 to 3.43 μm, with a mean value of 1.86 μm. The ratio of S1 thickness to the whole cell wall thickness in palm fibers appears to be higher than in secondary xylem fibers and tracheids. The lignin in the fiber walls is very electron dense which makes it difficult to obtain high contrast of the different layers in the secondary wall. To clarify the cell wall layering with cellulose microfibrils in different orientations, the fibrovascular bundles of the windmill palm (Trachycarpus fortunei) were delignified with different reaction time intervals. The treated fibers were surveyed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis and TEM. The secondary fiber walls of windmill palm clearly showed only two layers at different reaction intervals with different lignin contents, even after almost all lignin was removed. We suggest that the two-layered structure in the secondary wall of palm leaf fibers, which presumably also applies to the homologous fibers in palm stems, is a specific character different from the fibers in other monocotyledons (such as bamboo and rattan) and dicot wood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call