Abstract

The mechanism(s) of daptomycin (DAP) resistance (DAPr) is incompletely defined. Thickened cell walls (CWs) acting as either a mechanical barrier or an affinity trap for DAP have been purported to be a major contributor to the DAPr phenotype. To this end, we studied an isogenic set of methicillin-resistant Staphylococcus aureus (MRSA) isolates (pulsotype USA 300) from the bloodstream of a DAP-treated patient with endocarditis in which serial strains exhibited increasing DAPr. Of interest, the DAPr isolate differed from its parental strain in several parameters, including acquisition of a point mutation within the putative synthase domain of the mprF gene in association with enhanced mprF expression, increased synthesis of lysyl-phosphotidylglycerol, an enhanced positive envelope charge, and reduced DAP surface binding. Transmission electron microscopy (TEM) revealed no significant increases in CW thickness in the two DAPr isolates (MRSA 11/21 and REF2145) compared with that in the DAP-susceptible (DAPs) parental strain, MRSA 11/11. The rates of Triton X-100-induced autolysis were also identical for the strain set. Furthermore, among six additional clinically isolated DAPs/DAPr S. aureus strain pairs, only three DAPr isolates exhibited CWs significantly thicker than those of the respective DAPs parent. These data confirm that CW thickening is neither universal to DAPr S. aureus nor sufficient to yield the DAPr phenotype among S. aureus strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.