Abstract

Penicillium janczewskii, a filamentous fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae), grows rapidly on media containing either sucrose or inulin as carbon sources. Maintenance of P. janczewskii on inulin medium induces secretion of proteins with high inulinase activity but results in a mycelium that easily collapses and breaks. We evaluated the influence of inulin on fungal growth and colony morphology and on cell-wall structure and composition in comparison with growth and wall characteristics on sucrose-containing medium. P. janczewskii grown on Czapek medium with agar containing 1% (w/v) sucrose or inulin showed differences in the color and morphology of the colonies, although growth rates were similar on both carbon sources. Scanning-electron microscopy revealed that the hyphae from fungus grown on inulin-containing medium are much thinner than those from fungus cultivated on sucrose. Ultrastructural analysis of 5 d old cultures using transmission-electron microscopy indicated significant differences in the cell-wall thickness between hyphae grown on inulin or sucrose media. No differences were detected in the overall carbohydrate and protein contents of cell walls isolated from cultures grown on the two carbon sources. Glycosyl composition analyses showed glucose and galactose as the predominant neutral monosaccharides in the walls but showed no differences attributable to the carbon source. Glycosyl linkage composition analyses indicated a predominance of 3-linked glucopyranosyl in the hyphal walls when P. janczewskii was grown on inulin-containing medium. Our results suggest that growth on inulin as the sole carbon source results in structural changes in the mycelia of P. janczewskii that lead to mycelial walls with altered physical and biological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.