Abstract

BackgroundPretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility.ResultsThe hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion.ConclusionResults indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

Highlights

  • Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol

  • Two process steps are involved in the conversion of lignocellulose into bioethanol: (1) enzymatic hydrolysis of the cell-wall carbohydrates, cellulose and in some cases hemicellulose, into monomers; and (2) fermentation of the monomers into ethanol

  • All measurable arabinan is removed and the xylan content is reduced from 24.5% to 5.2%

Read more

Summary

Introduction

Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Two process steps are involved in the conversion of lignocellulose into bioethanol: (1) enzymatic hydrolysis of the cell-wall carbohydrates, cellulose and in some cases hemicellulose, into monomers; and (2) fermentation of the monomers into ethanol. The effect of the pretreatment has been described as a disruption of the cell-wall matrix including the connection between carbohydrates and lignin, as well as depolymerising and solubilising hemicellulose polymers [6]. This improves access for the saccharifying enzymes and alleviates mass-transport limitations [5]. Pretreatment is able to change the degree of cellulose crystallinity [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.