Abstract

BackgroundSugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics.ResultsA predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33 % vs 44 %). About 19 % of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75 % more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins.ConclusionsThe results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0677-0) contains supplementary material, which is available to authorized users.

Highlights

  • Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil

  • This work has contributed to three main aspects: (i) characterize cell wall protein (CWP) from sugarcane young stems, (ii) compare the CWPs found, regarding type and amount, using two different methods of extraction and (iii) point at candidate CWPs to be used in future research to enhance 2G ethanol production

  • This study offered a glimpse to the quantification of CWPs, providing help for the decision of which method is more suitable for the efficient extraction of different types of CWPs from sugarcane culms

Read more

Summary

Introduction

Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Proteomics studies have revealed the large diversity of CWPs [8,9,10] They have been grouped in different functional classes according to predicted functional domains and experimental data: polysaccharide modifying proteins, oxido-reductases and proteases, have been found as major classes. CWPs are involved in growth and development, signaling and defense against pathogens They virtually take part in most functions of the cells [4, 11, 13]. They can affect cell fate, being able to sense stress signals and transmitting them to the cell interior [14] They can have tissue-specific functions , such as playing roles in cuticle formation [15]. Plant cell walls are the subject of many fields of research

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.