Abstract
AbstractThe effects of temperature on the dynamics of changes in shoot mechanical properties, cell wall components, relevant soluble sugars and respiration activity of harvested white asparagus spears were investigated during a 7‐day storage period. All functional cell wall components of asparagus spears increased closely temperature dependent. The content of soluble glucose declined with a similar temporal dynamics and to a comparable degree, indicating a major carbon flow of this storage sugar into cell walls (60–70%). Irrespective of temperature, the contents of stored soluble fructose and sucrose remained more or less constant. Lower temperatures reduced cell wall development but do not significantly affect the relative carbon flow from storage sugars into cell walls or maintenance respiration. Compared with cell walls, maintenance respiration is by far the smaller carbon sink in stored asparagus spears. Temperature differentially affects the absolute amount and the relative contribution of the different cell wall components and the temporal dynamics of changes in structural carbohydrate and lignin content. At higher temperatures, secondary cell wall thickening resulted mainly from a large increase in cellulose content. The pronounced increase in the fractions of cellulose and especially lignin may stress the important role of lignin in cell wall strengthening. While the fraction of cell wall proteins decreased, those of hemicellulose and the pectic components were not influenced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.