Abstract
Plant cells react to localized stress by forming wall appositions outside their protoplasts on the inner surface of their cellulose walls. For many years it has been inferred that appositions elicited by encroaching fungi, termed "papillae," may subsequently also deter them and thus represent a disease-resistance mechanism. Recently, it has been shown that preformed, oversized papillae, experimentally produced in coleoptile cells of compatible barley, Hordeum vulgare, can completely prevent direct entry of Erysiphe graminis f. sp. hordei that ordinarily penetrates and causes disease. To discover how these papillae may function, acoustic microscopy was used to contrast their in vivo elastic properties with those of ineffective normal papillae and contiguous cell wall. Raster and line scans showed intense acoustic activity at sites of preformed papillae; scans in selected focal planes identified this activity with the papillae, not with subtending cell wall. Minimal acoustic activity was found in normal papillae. It is suggested that some wall appositions could serve in disease resistance as viscoelastic barriers to mechanical forces exerted by the special penetration structures of advancing pathogenic fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.