Abstract

We report here studies on the regulation of cell volume and K transport in human erythrocytes separated according to density. When cell volume was increased (isosmotic swelling, nystatin technique), erythrocytes of the least dense but not of the densest fraction shrunk back toward their original volume. This process was due to a ouabain (0.1 mM) and bumetanide (0.01 mM) (OB)-resistant K loss. OB-resistant K+ efflux from the least dense fraction was stimulated by hypotonic swelling and had a bell-shaped dependence on pH (pH optimum 6.75-7.0). These pH and volume effects were not evident in the densest fraction. The swelling-induced K+ efflux from the least dense fraction was inhibited when chloride was substituted by nitrate, thiocyanate, and acetate, whereas it was stimulated by bromide. Increasing cell Mg2+ content also markedly inhibited K+ efflux from isosmotically swollen cells. N-ethylmaleimide (NEM, 1 mM) greatly increased OB-resistant K+ efflux from the least dense fraction but not from the densest fraction. These data reveal the presence, in the lease dense fraction of normal human erythrocytes, of a pathway for K+ transport that is dependent on volume, pH, and chloride, is inhibited by internal Mg2+, and possibly plays a role in determining the erythrocyte water and cation content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.