Abstract
Cellular volume changes play important roles in many processes associated with the normal cell activity, as well as various diseases. Consequently, there is a considerable need to accurately measure volumes of both individual cells and cell populations as a function of time. In this study, we have monitored cell volume changes in real time during apoptosis using digital holographic microscopy. Cell volume changes were deduced from the measured phase change of light transmitted through cells. Our digital holographic experiments showed that after exposure to 1 μM staurosporine for 4 h, the volumes of KB cells were reduced by ~50-60%, which is consistent with previous results obtained using electronic cell sizing and atomic force microscopy. In comparison with other techniques, digital holographic microscopy is advantageous because it employs noninvasive detection, has high time resolution, real time measurement capability, and the ability to simultaneously investigate time-dependent volume changes of both individual cells and cell populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.