Abstract

BackgroundNovel strategies are required since the hypoxic tumor microenvironment is one of the important impediments for conventional cancer therapy. High mobility group box 1 (HMGB1) protein can block aerobic respiration in cancer cells. We hypothesized that HMGB1could also kill the colorectal cancer cells during hypoxia.MethodsIn this study, we developed oncolytic herpes simplex virus type 1 expressing HMGB1 protein (HSV-HMGB1) and investigated the cytotoxic effect of HSV-HMGB1 and its parental virus (HSV-ble) on three colorectal cancer cells (HCT116, SW480, and HT29) under normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. We further identified potential autophagy- related genes in HT29 cells by retrieving mRNA expression microarray datasets from the Gene Expression Omnibus database. These genes were then detected in HT29 cells infected with HSV-HMGB1 and HSV-ble during normoxia and hypoxia by Real-Time quantitative PCR (qRT-PCR).ResultsThe cytotoxic effect of HSV-HMGB1 was significantly higher than that of HSV-ble during normoxia; however, during hypoxia, HSV-HMGB1 enhanced the viability of HT29 cells at MOI 0.1. Analyzing the cell death pathway revealed that HSV-HMGB1 induced autophagy in HT29 cells under hypoxic conditions.ConclusionIn conclusion, it appears that oncolytic virotherapy is cell context-dependent. Therefore, understanding the cancer cells’ characteristics, microenvironment, and cell signaling are essential to improve the therapeutic strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call